Onderwerpen

Hieronder vind je de onderwerpen voor het UniMath-event (2022). Voor sommige onderwerpen is er didactisch materiaal beschikbaar dat verkrijgbaar zijn bij uitgeverij Die Keure. Voor een aantal onderwerpen is er didactisch materiaal in ontwikkeling. Hoe dan ook is deelname aan het volledige programma mogelijk zonder dat men over het materiaal beschikt. Meer informatie over het didactisch materiaal, dat bruikbaar is voor de lessen in het secundair onderwijs, vindt men hier.



Wiskundige aanpak van vage informatie

Imprecieze en onzekere informatie maakt deel uit van ons dagelijks leven. "Hoge temperaturen", "grote schommelingen", "zwakke winstcijfers", "ongeveer twee weken", "relevante documenten", ... het zijn slechts enkele voorbeelden van stukjes informatie die ons een beeld, maar geen precies of zeker beeld van iets geven.

Omdat zulke imprecieze en onzekere informatie zo vaak voorkomt, ook in complexe toepassingen, zijn er heel wat wiskundige modellen ontwikkeld om met dat soort informatie te kunnen "werken". De vaagverzamelingenleer, ontworpen in 1965, is zo'n model. Eenvoudig uitgelegd is het een uitbreiding van de klassieke verzamelingenleer waar een element ofwel wel ofwel niet tot een verzameling behoort, naar een verzamelingenleer waar een element "in een bepaalde mate" tot een verzameling kan behoren. Vandaag de dag is het een zeer uitgebreide theorie met praktische toepassingen in heel wat domeinen.

Specifieke voorkennis: elementaire verzamelingenleer


Fourieranalyse en compressie van geluiden en beelden

We maken in het dagelijks leven gebruik van een aantal technologieën waarachter heel wat wiskunde schuilt. In deze les bekijken we van nabij hoe muziek in een MP3-bestand sterk gecomprimeerd kan worden zonder hoorbaar kwaliteitsverlies. De achterliggende wiskunde bestaat in dit geval in het opsplitsen van een geluidssignaal in een spectrum van verschillende toonhoogten, de zogenaamde Fourier-analyse. Hetzelfde principe wordt gebruikt wanneer foto's gecomprimeerd opgeslagen worden.

Specifieke voorkennis: somformules voor sinus en cosinus, inproduct (of scalair product), loodrechte stand van twee vectoren


Projectieve vlakken en codes

We laten de leerlingen smaken van de moderne projectieve meetkunde, waarin eindigheid centraal staat. We concentreren ons op die eigenschappen die belangrijk zijn voor de zogenaamde codeertheorie. Op die manier kunnen we bijvoorbeeld illustreren hoe een cd werkt, in het bijzonder waarom een niet te erg gekraste cd nog steeds de muziek perfect weergeeft, en een ergere kras dit plots verijdelt. Andere toepassingen die worden aangeraakt zijn bankrekeningnummers, IBSN en ISSN nummers -- de leerlingen leren bijvoorbeeld een bankrekeningnummer terugvinden waarin een cijfer onleesbaar is, of waarin een cijfer foutief is (maar men weet niet welk cijfer!).

Specifieke voorkennis: geen


Google PageRank algoritme

Om ons toe te laten binnen het WWW net die informatie terug te vinden die we willen, maakt elke browser gebruik van een zoekmachine. Zo'n machine rangschikt de pagina's van het internet volgens belang. De meest bekende zoekmachine (we hebben er zelfs een werkwoord van gemaakt) is wellicht Google. De basis van de Google-zoekmachine is een gepatenteerd algoritme dat PageRank heet. Het PageRank algoritme, dat dateert van 1998, is een prachtig voorbeeld waarin de kracht van de wiskunde (en meer bepaald de lineaire algebra) wordt geïllustreerd. In wiskundige termen komt het er op neer dat het internet vertaald wordt in een hele grote matrix, waarvan de eigenvector horend bij eigenwaarde 1 bepaald dient te worden. In de les zullen we geheimen van dit PageRank algoritme blootleggen. De start is de introductie van de begrippen eigenvector en eigenwaarde van een matrix.

Specifieke voorkennis: basiskennis matrices en determinanten, basiskennis complexe getallen


Algoritmen aan het werk

Op de achtergrond bij heel wat van onze dagelijkse bezigheden zijn algoritmen aan het werk. Hoe vindt Google zo snel de gewenste pagina met de informatie die we zoeken? Hoe kan Google een waarde-oordeel vellen over de vele pagina's die mogelijke informatie bevatten? Waarom is Google `slim' genoeg om een typfoutje in je zoekopdracht dikwijls te herkennen en te verbeteren? Waarom verlies je kwaliteit bij het comprimeren van je foto's (in JPG-formaat), terwijl je tekstbestanden moeiteloos kan comprimeren (naar ZIP-formaat) zonder verlies van informatie? In deze sessie geven we je een inkijkje in een aantal van de algoritmen die dit mogelijk maken.

Specifieke voorkennis: geen